

Nutritional Aspects of Pulse Crops and Potential for Creating Value

Julianne Curran, PhD

Prairie Grain Development Committee Annual Meeting
Winnipeg, Manitoba
February 27th, 2008

Canadian Peas

Peas are grown in Saskatchewan, Alberta and Manitoba.
Predominant Types: Yellow and Green

Whole Peas

Split Peas

Flour

Protein Concentrates
and Isolates

Pea Starch

Pea Fibre

Canadian Lentils

Lentils are mostly grown in Saskatchewan and some grown in Alberta.
Predominant Types: Large Green, Small Green and Red

Whole

Split Red

Flours

Flakes

Canadian Beans

Beans mostly grown in Ontario, Manitoba and some grown in Alberta.
Predominant Types: Navy, Pinto, Black, Kidney, Cranberry, Small Red

Whole

Flours

Flakes

Canadian Chickpeas

Chickpeas are mostly grown in Saskatchewan and Alberta.
Predominant Types: Kabuli and Desi

Whole

Flours

Did you know?

Canada is...

- *World's largest pea & lentil producer & exporter*
- *Selling pulses to 169 countries = diversified export markets*
- *Among top three bean & chickpea exporters in the world*
- *A world leader in the pulse industry, from variety development to production*

PULSE CANADA'S
Pulse
Innovation Project

*"The Development of
New Market
Opportunities for
Beans, Peas, Lentils
and Chickpeas in the
North American Food
Sector"*

New Target...New Uses...

Pulse Innovation

- ✓ Focus on the affluent, North American market that is close in proximity
- ✓ Current per capita consumption is low
- ✓ Pulses have appropriate attributes for North American consumer demands for nutritious foods
- ✓ Focus on Research:
 - Discover potential for pulses to address health problems
 - Encourage innovation by food processors

PIP Deliverables

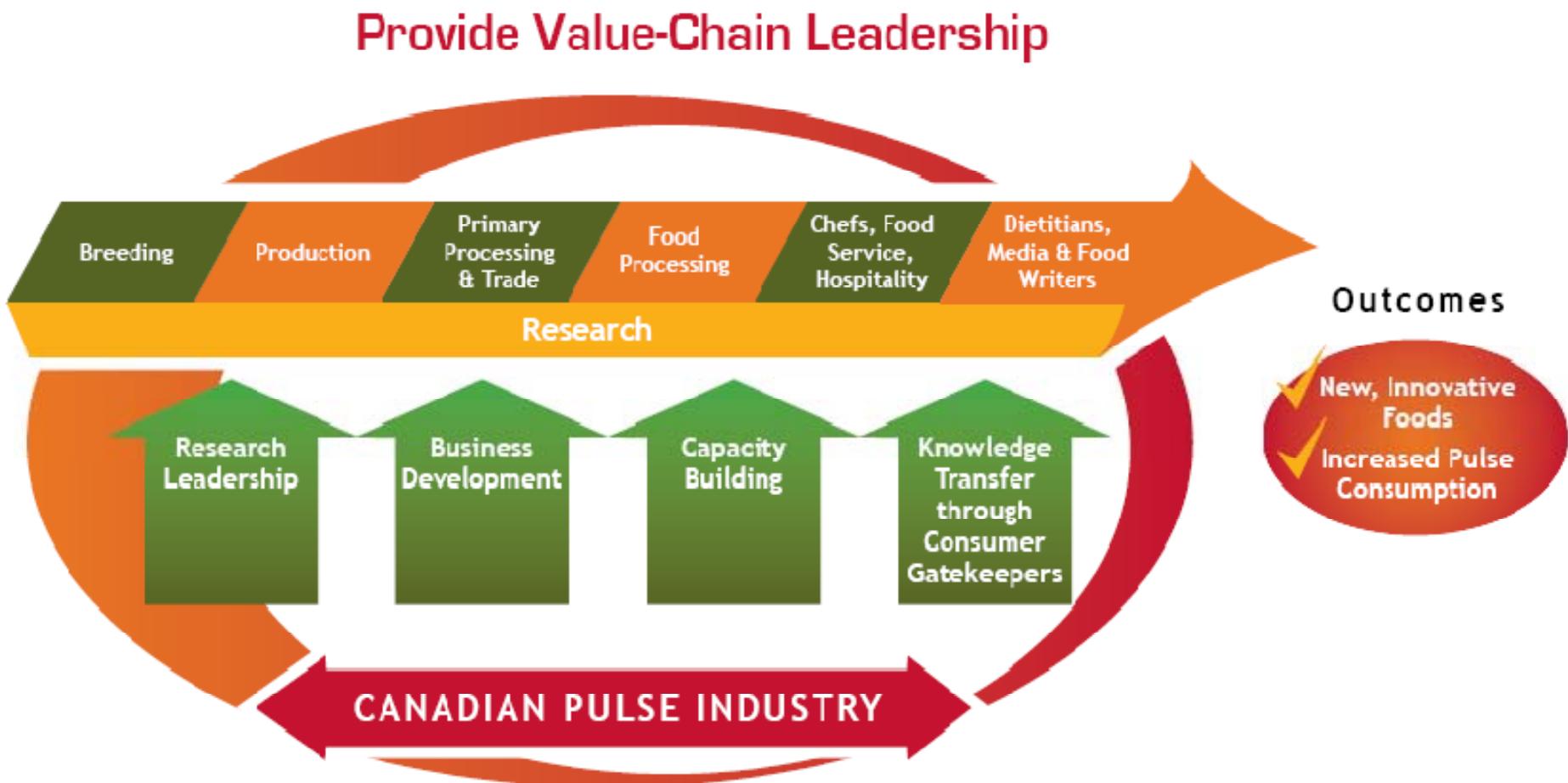
- **Industry Strategy and Action Plan**
 - Strategy & Action plan to stimulate innovation in product development & marketing to increase demand for pulses, leveraging nutrition & health attributes
- **Human Clinical Studies**
 - Selection and management of human clinical trials studying the link between pulse consumption and positive health outcomes

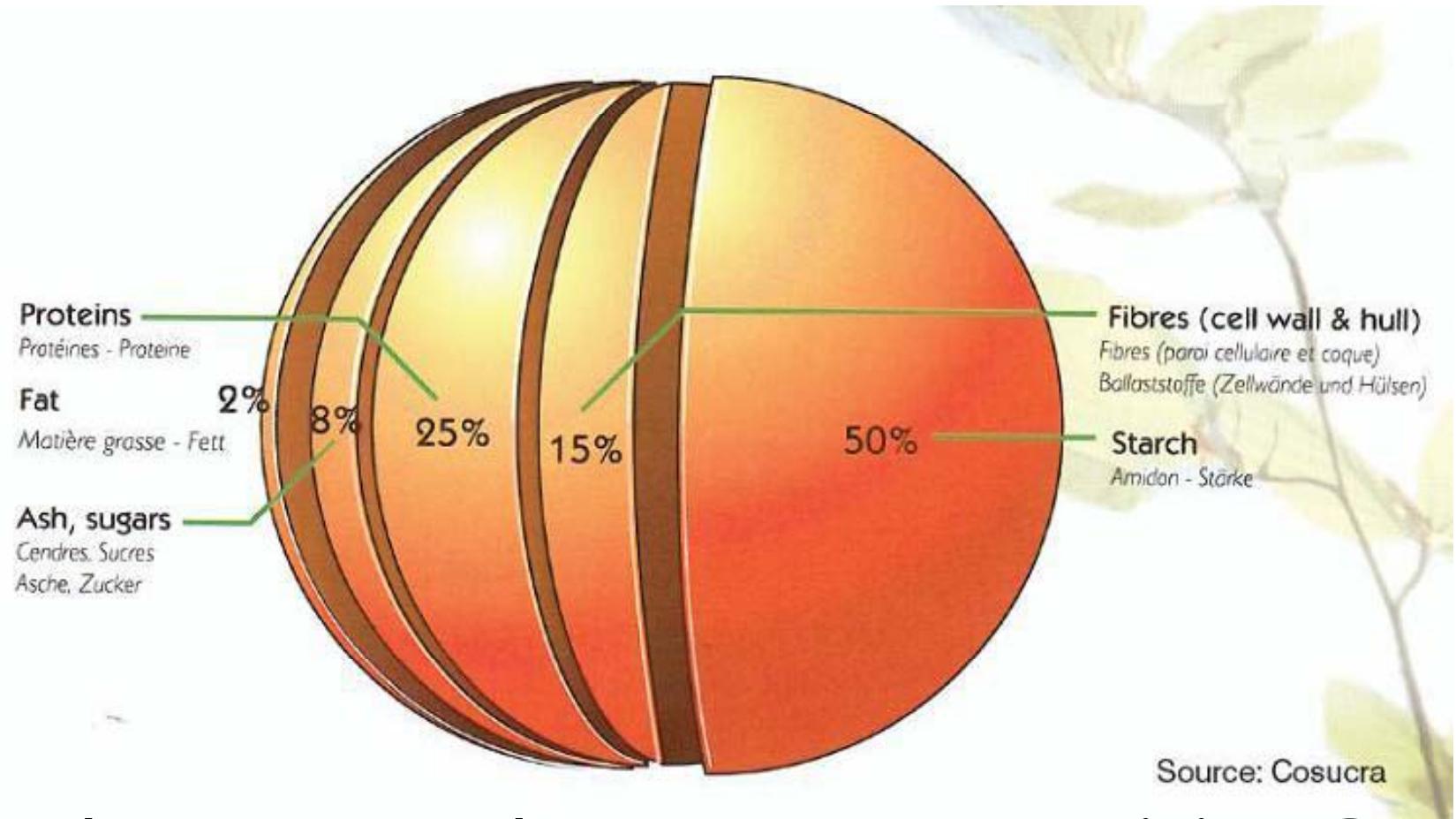
PIP Committees

Pulse Innovation

Food Companies

Research Institutions


Health Organizations


Government

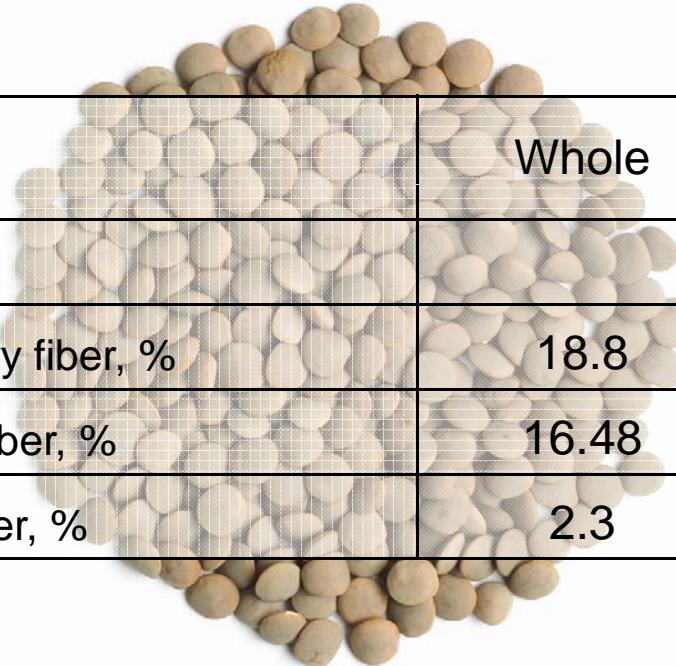
Four Strategic Focus Areas

NUTRITIONAL COMPOSITION OF PULSES

Source: Cosucra

What are the opportunities?

Pulses as a Protein Source


- About 2x the amount of protein in cereals
- Pulses are deficient in methionine and cysteine, so complement cereal proteins (deficient in lysine)
- Contain some “antinutritional” compounds like enzyme inhibitors, lectins
- Pulses are one of the lowest overall environmental impact sources of protein

Pulse Proteins – Opportunities for value-added???

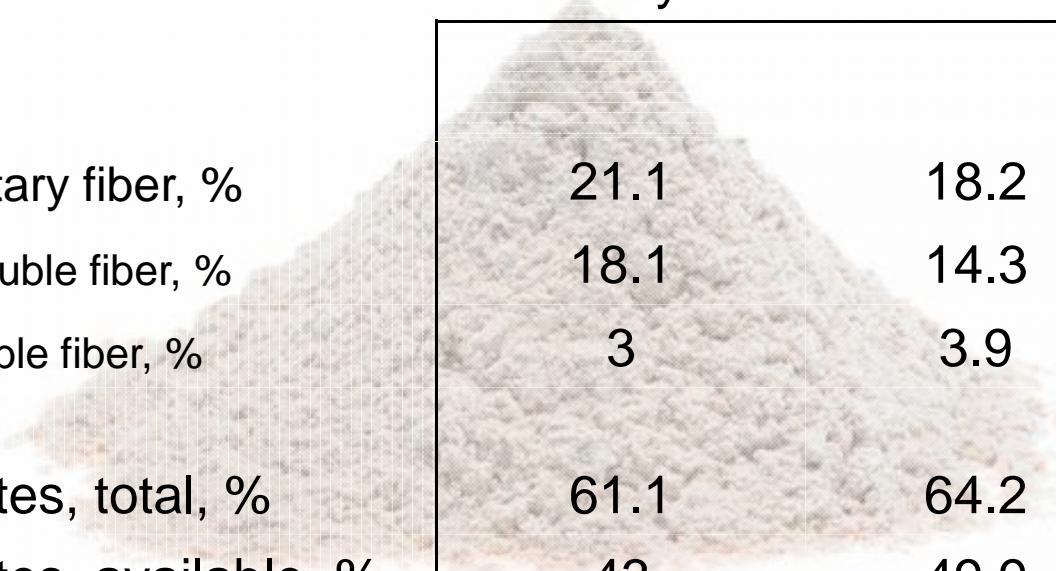
- Increase methionine and cysteine in globulin proteins
- Reduce or remove undesirable protein-based antinutritional compounds, improve flavor attributes
- Engineering properties of pulse globulins to alter functional behavior (gelation, emulsification, foaming)

Pulses as a Fibre Source

Whole Lentils

	Whole	Dehulled
Fiber		
Total dietary fiber, %	18.8	10.77
Insoluble fiber, %	16.48	9.08
Soluble fiber, %	2.3	1.53

Source: Ning Wang et al. 2008. Canadian Grain Commission. Unpublished data.


<u>Whole Peas</u>	Whole	Dehulled
Fiber		
Total dietary fiber, %	15.5	9.4
Insoluble fiber, %	13.8	8.1
Soluble fiber, %	1.6	1.3

Source: Ning Wang et al. 2008. Canadian Grain Commission. Unpublished data.

<u>Yellow Pea Flours</u>	Whole	Split	Fiber
Fiber			
Total dietary fiber, %	17.6	6.5	84.2
Insoluble fiber, %	15.6	5.6	76.3
Soluble fiber, %	2	0.9	7.9
Carbohydrates, total, %	66.3	64.2	89
Carbohydrates, available, %	50.7	58.6	12.7

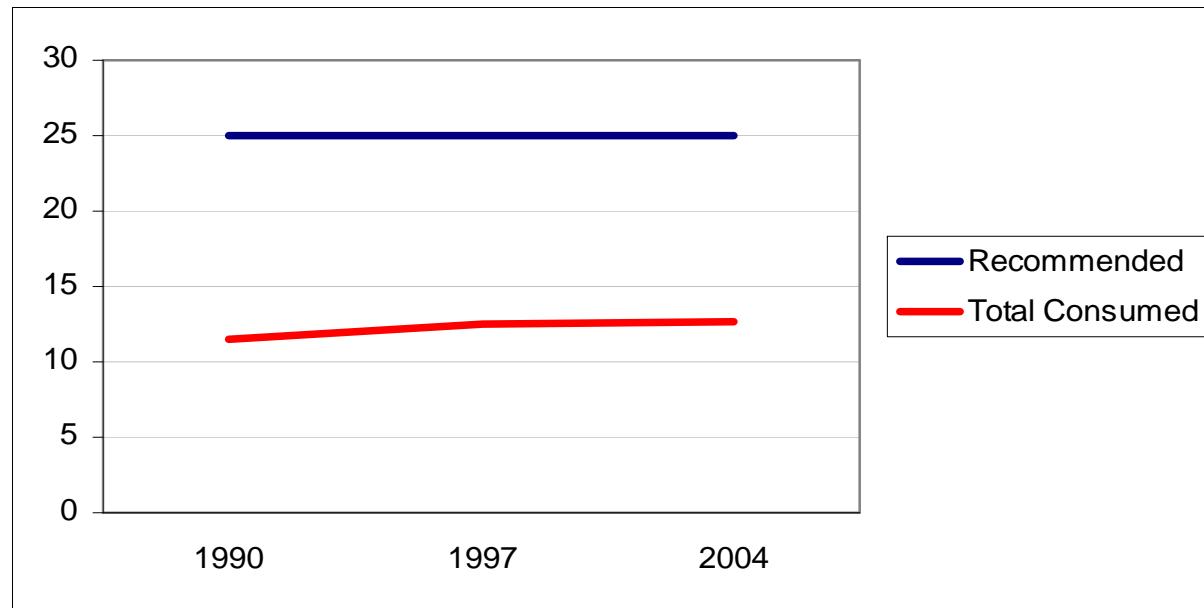
Source: Medallion Laboratories

Whole Bean Flours

	Navy	Black	Pinto
Fiber			
Total dietary fiber, %	21.1	18.2	17.5
Insoluble fiber, %	18.1	14.3	13.3
Soluble fiber, %	3	3.9	4.2
Carbohydrates, total, %	61.1	64.2	61.4
Carbohydrates, available, %	43	49.9	48.1

Source: Medallion Laboratories

Comparing Fibre-Rich Food Sources


	Serving Size	Total Fibre	Soluble	Insoluble
All-bran cereal	1/3 cup	8.43 g	0.59 g	7.84 g
Oatmeal, regular	1 cup	4.45 g	1.64 g	2.81 g
Apple with skin	1 medium	2.76 g	0.28 g	2.48 g
Kidney beans	1/2 cup	6.66 g	1.41 g	5.25 g
Navy Bean Flour (Source: AAFC data)	50 g	10.6 g	1.5 g	9.05 g

Source: The New Fiber Story: Natural Resistant Starch. Philadelphia, Sept 29, 2007

Canadians Need More Fibre!

Recommended Amount: 20-40 g/day

Current Consumption in Canada: < 15 g/day

Source: Canada Food Stats, Statistics Canada

Effects of processing on fibre in peas and lentils

- Dehulled peas/lentils had ~40% less total fibre than whole peas/lentils
- Cooked whole peas/lentils had ~20% higher levels of total fibre vs raw whole peas
- Levels of insoluble fibre increased ~30% for whole peas and ~20 for whole lentils when cooked whereas soluble fibre levels decreased (~7%)

Source: Ning Wang et al, 2008. The Canadian Grain Commission. Unpublished Data.

Pulses as a Starch Source

Starch Composition of Pea Flours

	Whole Yellow	Split Yellow	Whole Green	Split Green
Total starch, %	43.3	49.8	51.5	47.7
Amylose, %	10.0	13.2	13.0	13.4
RDS, %	7.4	8.5	8.7	8.7
SDS, %	35.4	38.8	36.4	38.6
RS, %	0.5	2.5	6.4	0.4

Source: AAFC, Food Research Program, Guelph, Ontario

Starch Composition of Whole **Bean** Flours

	Navy	Black	Pinto
Total starch, %	33.3	38.3	37.0
Amylose, %	9.3	9.2	10.5
RDS, %	1.0	0.9	1.3
SDS, %	2.4	3.9	1.9
RS, %	29.8	33.5	33.8

Source: AAFC, Food Research Program, Guelph, Ontario

Comparing Resistant Starch Food Sources

	Serving Size	Resistant Starch
Banana, raw	1 medium (118 g)	4.7 g
Cold pasta	1 cup (150 g)	1.9 g
High-amyllose corn ingredient (Hi-maize)	1 tablespoon	6.6 g
Navy beans, cooked	½ cup (100 g)	9.8 g
Navy bean flour (AAFC data)	50 g	14.9 g

Source: Nutrition Today, Vol 42, No 3, May/June 2007

Oligosaccharides

(g/100 g)	Peas	Beans	Lentils	Chickpeas
Raffinose	0.7	0.5	0.43	0.61
Stachyose	2.7	4	2.09	2.2
Verbascose	1.0	ND	0.56	ND
Total Oligosaccharides	4.4	4.6	3.07	2.81

Source: Ning Wang. Chemical Composition of Canadian Pulse Crops.

Overall, range of oligosaccharides (alpha-galactosides) in pulses is 2 -10 g/100 g. Stachyose is most predominant.

Pulse Carbohydrates – Opportunities for value-added???

- Increase soluble fibre content
- Maintain the hull (b/c of fibre) but improve water absorption or decrease cooking time (e.g. lentils)
- Improve starch functionality (amylose/amylopectin) and/or nutrition (resistant starch)
- Oligosaccharides as prebiotics???
Enhance levels?

Vitamins, Minerals, Phytonutrients

- B Vitamins: Folate, Thiamin, Riboflavin, Niacin, Vitamin B6
- Minerals:
 - Iron
 - Potassium
 - Calcium
 - Zinc
 - Phosphorus
 - Selenium
- Phytonutrients: Saponins, antioxidants, phytates tannins

Effects of processing on vitamins in peas and lentils

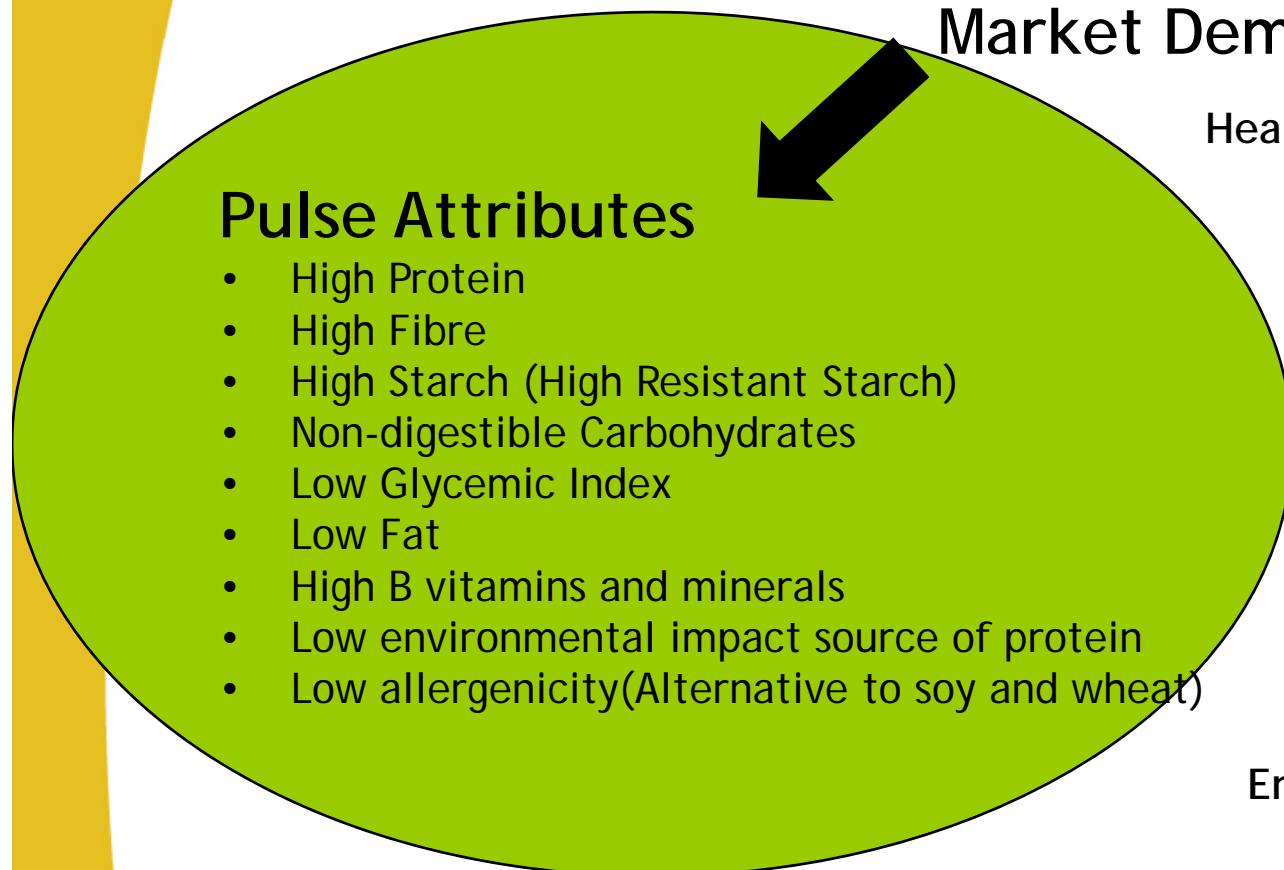
- Folate decreased by ~25% in dehulled peas and ~50% in dehulled lentils
- Folate decreased by ~60% in cooked peas and cooked lentils
- All B vitamins were decreased by 20-40% in peas and lentils after cooking

Source: Ning Wang et al, 2008. The Canadian Grain Commission. Unpublished Data.

Effects of processing on minerals in peas and lentils

- Iron levels decreased by ~ 10-20% after dehulling
- Iron levels were about ~15% lower in cooked peas and lentils
- Potassium levels decreased by ~40% in cooked peas and lentils

Source: Ning Wang et al, 2008. The Canadian Grain Commission. Unpublished Data.


Bioavailability of vitamins and minerals in pulses

- Low bioavailability of iron in pulses
- Limited information on bioavailability of other minerals like Zn, Ca, etc but presence of phytate, oxalate, polyphenols may affect bioavailability

Pulse Vitamins and Minerals – Opportunities for value-added???

- Ways to decrease B vitamin losses (e.g. folate) that occur during cooking
- Increase iron and other mineral bioavailability

Opportunities to Capitalize on Nutritional Attributes that meet Market Demands

R&D should build on inherent pulse attributes + end user interest